HSL Workshop

April 2-5, 2002 University of Chicago

AURA/NASA/ESA

G. I llingworth R. Kennicutt Co-Chairs

www.aura-astronomy.org/hsl

Context

- HST de-orbit in ~2010 will leave astronomy without high-resolution capability in visible-UV (0.1 - 1?m)
- SUVO initiative proposed modest-aperture successor to AASC --> not recommended
 - modest planning effort continuing via SEU
- Need for a broader assessment of future science opportunities and feasibility of a large HST successor facility, for 2010-2020 time frame
- Initial focus on large (~8m) telescope with a large discovery potential
 - sensitivity 20-100x HST
 - angular resolution of order 10 milliarcsec over large fields
 - possible coronagraphic and/or adaptive capabilities
 - can assess merits vs smaller single/multiple missions

Workshop Objectives

- I dentify likely key science problems in 2010-2020 time frames: solar system --> cosmology
- Assess scientific need for post-HST space facility (diffraction-limited performance in visible- UV)
 - core science drivers
 - key science, important for defining technical capabilities
- I dentify likely technological capabilities, key technical challenges for large visible-UV telescopes
 - critical assessment in light of 30m telescopes + AO, precursor space facilities
 - identify key areas for early or long-term technology investment, to enable facilities in 2010+

Workshop Products

- Published proceedings (~50 invited talks + posters)
- White paper
 - distillation of principle outcomes of workshop
 - SOC (below) provided preliminary ideas based on workshop planning discussions

SOC

- G I llingworth, R Kennicutt, S Beckwith, C Cesarsky,
 - J Crocker, A Dressler, A Dupree, S Faber, W Freedman,
 - A Gimenez, H Hasan, R Kron, S Lilly, J Lunine,
 - D Macchetto, J Mould, W Oegerle, E Schrier, M Shull,
 - L Simmons, E Smith, D Spergel, M Urry

(Anticipated) Science Drivers

Exoplanetary systems

- direct imaging of solar systems, earth-like planets
- microlensing + transit observations of exoplanetary systems
- High-resolution imaging/spectra of distant galaxies
 - trace rest-UV, star formation without dimming bias
 - detailed dynamics, buildup of dark matter, stars, metals, central black holes

Evolution of the IGM and galaxy halos

- thousands of sightlines (through galaxies!) at all redshifts
- detailed history of IGM structure, ionization, metal evolution
- galaxy mass loss, superwinds, interaction with IGM
- Precision studies of weak lensing, map dark matter

Science Drivers 11

The Galactic neighborhood

- precision distances to >30 Mpc: a 3D map of the local universe
- star formation histories of galaxies vs type, mass
- definitive age scale, IMF determinations
- High-resolution imaging/spectra of AGNs
- Stellar astrophysics
 - surface imaging of stars, circumstellar structures, SNRs
 - stellar seismology of stars throughout the Galaxy
 - high-resolution studies of proto-planetary disks, jets

Solar system

- monitoring of planet weather, geological activity

Technology: Optics

- Lightweighted optics with exquisite accuracy
- Fabrication technologies
- Active wavefront control (primary optics)
- High-reflectivity, durable coatings for visible UV
- Coronagraphic optimization
- Adaptive optics for high-order wavefront correction
- Thermal control design, testing, demonstration
- Pointing/control systems for 10 milliarcsec imaging

Technology II

- System design studies (e.g., weight, baffling)
- Orbit trade studies
- Detectors
 - high efficiency, dynamic range in UV
 - large formats, mosaics
 - photometric stability, high radiation environment performance
 - new technology, e.g., energy-resolving detectors
- Multi-mirror/shutter arrays
- Contamination control
- Launch vehicle, shroud constrains in 2015 time frame
- Options for on-orbit construction, assembly